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Periodic Quasi-Exactly Solvable Models
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Various quasi-exact solvability conditions, involving the parameters of the periodic
associated Lamé potential, are shown to emerge naturally in the quantum Hamilton–
Jacobi (QHJ) approach. We study the singularity structure of the quantum momentum
function, which yields the band-edge eigenvalues and eigenfunctions and compare it
with the solvable and quasi-exactly solvable non-periodic potentials, as well as the
periodic ones.
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1. INTRODUCTION

Quasi-exactly solvable (QES) Hamiltonians, interconnecting a diverse array
of physical problems, have been the subject of extensive study in recent times
(Atre and Panigrahi, 2003; Geogo et al., 2003; González-López et al., 1991;
Razavy, 1980, 1981; Shifman, 1989; Singh et al., 1978; Turbiner and Ushveridze,
1987; Ushveridze, 1994; Znojil, 1983). These systems, containing a finite number
of exactly obtainable eigenstates, have been linked with classical electrostatic
problems, as also to the finite dimensional irreducible representations of certain
algebras. Some of these studies employ group theoretical methods, others are
based on the symmetry of the relevant differential equations (González-López
et al., 1991; Shifman, 1989; Turbiner and Ushveridze, 1987; Ushveridze, 1994).
The key to the existence of the finite number of identifiable states is the quasi-
exact solvability condition, relating certain potential parameters of these dynamical
systems. An interesting feature, distinguishing these QES systems from known
exactly solvable cases, is the presence of complex zeros in the polynomial part
of the wave functions. Hence, quantum Hamilton–Jacobi (QHJ) formalism, being
naturally formulated in the complex domain, is ideally suited for studying the
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QES problems (Geogo et al., 2003). Although polynomial potentials have been
studied rather exhaustively, QES periodic potentials have not received significant
attention in the literature.

The associated Lamé potential (ALP),

V (x) = a(a + 1)m sn 2(x,m) + b(b + 1)m
cn 2(x,m)

dn 2(x,m)
(1)

is an interesting example of a periodic potential, which is exactly solvable, when
a = b and shows QES property, when a �= b. Here, sn (x,m), cn (x,m), and
dn (x,m) are the doubly periodic elliptic functions with modulus parameter m

(Hancock, 1958). The ALP has a periodic lattice of period K(m) with the basis
composed of two different atoms which are alternately placed. It possesses a sur-
prisingly large variety of QES solvability conditions depending on the nature of
the potential parameters a and b.

For a, b being unequal integers, with a > b > 0, there are a bound bands
followed by a continuum band, whose band-edge solutions can be obtained ana-
lytically. If a − b is odd (even) integer, it has b doubly degenerate band edges of
period 2K(4K), which cannot be obtained analytically. The existence of analyt-
ically inaccessible states can be ascertained through the oscillation theorem. For
a, b having half-integral values (with a > b), there are infinite number of bands
with band-edge wave functions having period 2K (4K), if a − b is odd (even).
Of these infinite number of bands, a − b bands have band edges, which are non-
degenerate with period 2K(4K) and b + 1

2 doubly degenerate states of period
2K(4K) that can be obtained analytically. For a being an integer and b being a
half-integer or vice versa, one can obtain some exact analytical results for mid-
band states (Khare and Sukhatme, 1999, 2001; Magnus and Wrinkler, 1966).

It is quite natural to enquire about the origin of this rich QES structure
in the associated Lamé potential (Ganguly, 2002; Tkachuk and Voznyak, 2002).
This paper is devoted to the study of the same through the quantum Hamilton–
Jacobi approach. The quasi-exact solvability conditions, involving the parameters
of the periodic associated Lamé potential, are shown to emerge naturally. We also
study the singularity structure of the quantum momentum function, which yields
the band-edge eigenvalues and eigenfunctions. As will be seen in the text, the
present approach is quite economical as compared to the earlier known methods,
for determining the eigenvalues and eigenfunctions (Arscot, 1964; Magnus and
Wrinkler, 1966).

In our earlier studies, we had looked at non-periodic ES, QES, and ES
periodic potentials through the QHJ formalism which was initiated by Leacock
and Padgett (1983). We were successful in obtaining the quasi-exact solvability
condition (Geogo et al., 2003) for QES models and in obtaining the eigenvalues
and eigenfunctions for the ES and the band-edge eigenfunctions and eigenvalues
of the ES periodic Lamé and the associated Lamé potentials (Sree Ranjani et al.,
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2004). As noted earlier, when a = b = j , j being an integer, the associated Lamé
potential is ES. The present study makes use of the QHJ formalism as developed
in our earlier papers (Geogo et al., 2003; Sree Ranjani et al., 2004) for studying
the quasi-exactly solvable regime of the associated Lamé potential. As has been
seen in the non-periodic case, the QES potentials give rise to novel singularity
structures in the QHJ approach, which is quite different from the ES cases. In this
light, it is all the more interesting to study QES periodic potentials in the present
approach. As will be seen in the text, new technical points did arise and had to be
taken care of before the solutions could be found for these problems.

The QHJ formalism revolves around the logarithmic derivative of the wave
function p,

p = −ih
d

dx
ln ψ, (2)

known as the quantum momentum function (QMF), which satisfies a Riccati type
equation

p2 − ih
dp

dx
= 2M(E − V (x)). (3)

We have found that, the knowledge of the singularity structure of the QMF and the
residue at these singular points are the only information, that is needed to obtain
the QES condition and the solutions. In all our earlier studies, it was assumed
that, the point at infinity is an isolated singularity. This assumption turned out
to be correct and led to the QES conditions. The present study will enable us to
analyze the singularity structure of the QMF, to check the assumptions and to
see if one could get the QES conditions as a consequence of this assumption and
reproduce known results of band-edge energies and eigenfunctions.

The plan of the paper is as follows. In Section 2, we obtain the QES condition
along with the forms of the wave functions for the general ALP. In Section 3,
we analyze the situation where both a, b are integers taking values 2 and 1,
respectively. The case when a, b are both half-integers, with values 7/2 and 1/2,
respectively, is analyzed in Section 4. Section 5 contains the concluding remarks.

2. QES CONDITION AND THE FORMS OF THE WAVE FUNCTIONS

The QHJ equation for the ALP, putting h = 2M = 1, is given by

p2 − ip′ =
(

E − a(a + 1)m sn 2(x) − b(b + 1)m
cn 2(x)

dn 2(x)

)
. (4)

Note that with the transformation b → −b − 1 or a → −a − 1, the potential
does not change. Hence, for our analysis, without loss of generality, we take a, b
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positive, with a > b. Defining p ≡ −iq and substituting it in Eq. (4), one obtains

q2 + dq

dx
= a(a + 1)m sn 2(x) + b(b + 1)m

cn 2(x)

dn 2(x)
− E. (5)

Changing the variable to t ≡ sn (x), and writing

q =
√

(1 − t2)(1 − m t2)φ, with φ = χ + 1

2

(
m t

1 − m t2
+ t

1 − t2

)
, (6)

Equation (5), gets transformed into

χ2 + dχ

dt
+ m2t2 + 2m(1 − 2b(b + 1))

4(1 − mt2)2
+ 2 + t2

4(1 − t2)2

+ 2E − mt2(1 − 2a(a + 1))

2(1 − t2)(1 − mt2)
= 0. (7)

For all our later calculations, we shall treat χ as the QMF and Eq. (7) as the
QHJ equation. It is interesting to note that through the above mapping the orig-
inal eigenvalue problem has been cast onto the zero energy sector of a different
Schrödinger problem as is evident in Eq. (7).

2.1. Singularity Structure

From Eq. (7), we see that χ has fixed poles at t = ±1 and t = ± 1√
m

. In addition to
the fixed poles, the QMF has finite number of moving poles and no other singular
points in the complex plane. Hence, one can write χ as a sum of the singular and
analytical parts as follows

χ = b1

t − 1
+ b′

1

t + 1
+ d1

t − 1√
m

+ d1

t + 1√
m

+ P ′
n

Pn

+ Q(t) , (8)

where b1, b
′
1, d1, and d ′

1 are the residues at t = ±1 and ± 1√
m

, respectively, which

need to be calculated. Pn is an nth degree polynomial with P ′
n

Pn
= ∑n

k=1
1

t−tk
being

the summation of terms coming from the n moving poles with residue one. The
function Q(t) is analytic and bounded at infinity. Hence, from Liouville’s theorem
it is a constant, say C. The residues at the fixed poles can be calculated by taking
the Laurent expansion around each individual pole and substituting them in Eq. (7).
Comparing the coefficients of different powers of t , one gets two values of residues
at each pole owing to the quadratic nature of the QHJ equation. Thus, the two
values of the residues, b1, b′

1 at t = ±1 are

b1 = 3

4
,

1

4
and b′

1 = 3

4
,

1

4
. (9)
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At t = ± 1√
m

, one has

d1 = 3

4
+ b

2
,

1

4
− b

2
and d ′

1 = 3

4
+ b

2
,

1

4
− b

2
. (10)

Since, there is no way of ruling out one of the two values of these residues, we need
to consider both the values. Imposing the parity constraint on the wave function
yields χ (t) = −χ (t), which in turn gives the condition b1 = b′

1 and d1 = d ′
1.

2.2. Behavior at Infinity

Equation (8) gives the behavior of χ in the entire complex plane. Hence, for
large t ,

χ ∼ 2b1 + 2d1 + n

t
, (11)

where the restriction b1 = b′
1 and d1 = d ′

1 has been applied. This should match
with the leading behavior of χ obtainable from Eq. (7). Note that, the assumption
about the singularity structure of χ is equivalent to the point at infinity being an
isolated singularity. Since χ has at most an isolated singular point at infinity, one
can expand χ in Laurent series around the point at infinity as

χ (t) = λ0 + λ1

t
+ λ2

t2
+ · · · . (12)

Substituting Eq. (12) in (7) and comparing various powers of t , one gets λ0 = 0,
thus making Q(t) in Eq. (8) equal to zero. Further one obtains

λ1 = a + 1, −a. (13)

Since both the equations, Eqs. (11) and (13), give the leading behavior of χ at
infinity, both should be equal. Thus,

2b1 + 2d1 + n = λ1. (14)

Taking various combinations of b1 and d1 from Eqs. (9) and (10), substituting
them in Eq. (14) one obtains the QES condition for each combination as given
in Table I for λ1 = a + 1. Thus, one sees that all the allowed combinations of
residues give one of the forms of QES condition (Khare and Sukhatme, 1999),
where n = 0, 1, 2 . . . . Note that, the other value of λ1, i.e., −a, when substituted
instead of a + 1 in Eq. (14), gives the QES condition for negative values of a, b,
i.e., for a → −a − 1, b → −b − 1 in b1, d1.
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Table I. The Quasi-Exact Solvability Condition From the Four Permitted
Combinations of b1 and d1 for the General Associated Lamé Potential

Set b1 d1 2b1 + 2d1 + n = λ1 QES condition

1 3/4 3
4 + b

2 2 + b + n = a b − a = −n − 2

2 3/4 1
4 − b

2 1 − b + n = a a + b + 1 = n + 2

3 1/4 3
4 + b

2 1 + b + n = a b − a = −n − 1

4 1/4 1
4 − b

2 − b + n = a a + b = n

2.3. Forms of Wave Function

From Eq. (2), one can write ψ in terms of p as

ψ(x) = exp

(∫
i pdx

)
. (15)

Changing the variable to t and writing p in terms of χ , one gets

ψ(x) = exp

{∫ [
χ + 1

2

(
mt

1 − mt2
+ t

1 − t2

)]
dt

}
. (16)

Substituting χ from Eq. (8) in the above equation gives the wave function in terms
of the residue b1, d1 and the polynomial Pn

ψ(t) = exp

(∫ [
(1 − 4b1)t

2(1 − t2)
+ (1 − 4d1)mt

2(1 − mt2)
+ P ′

n

Pn

]
dt

)
. (17)

In terms of the original variable x the wave function takes the form,

ψ(x) = (cn x)α(dn x)βPn(sn x) (18)

where α = 4b1−1
2 , β = 4d1−1

2 . Hence, for each set of b1, d1 one gets a wave
function given by Eq. (18). The degree n of this polynomial, which is obtained
from Eq. (14)

n = a + 1 − 2b1 − 2d1 (19)

in terms of either a + b or a − b, as is evident from Table I. The forms of the wave
functions can also be found, for the two different cases, when a + b and a − b are
odd and even separately.

Case 1. Both a + b, a − b are even: We introduce N = a+b
2 and M = a−b

2 , where
M and N are integers, and obtain the forms of the wave functions in Table II, in
terms of M and N , for the four sets of combinations of b1 and d1 in Table I.

Case 2. Both a + b, a − b odd: Introducing 2N ′ + 1 = a + b and 2M ′ + 1 =
a − b, where M ′ and N ′ are integers, we obtain the wave functions, in terms of
M ′ and N ′, for the four sets of combinations of b1 and d1 in Table III.
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Table II. The Form of the Wave Functions for the Four Sets of Residue Combinations When
a + b and a − b are Even and Equal to 2N and 2M , Respectively

Set b1 d1 n = λ1 − 2b1 − 2d1 n(M, N ) Wave function ψ(x) LI solutions

1 3/4 3
4 + b

2 a − b − 2 2M − 2 cn x(dn x)1+bP2M−2(sn x) M

2 3/4 1
4 − b

2 a + b − 1 2N − 1 cn x

(dn x)b
P2N−1(sn x) N

3 1/4 3
4 + b

2 a − b − 1 2M − 1 (dn x)b+1P2M−1(sn x) M

4 1/4 1
4 − b

2 a + b 2N
P2N (sn x)

(dn x)b
N + 1

From the forms of the wave functions in Tables II and III, one observes that
the number of linearly independent solutions is different for the two cases. The
unknown polynomial in the wave function can be obtained by substituting χ from
Eq. (8) in the QHJ equation, which gives

P ′′
n (t) + 4Pn(t)

(
b1t

t2 − 1
+ md1t

mt2 − 1

)
+ G(t)Pn(t) = 0 (20)

where

G(t) = t2
(
4b2

1 − 2b1 + 1
4

) − 2b1 + 1
2

(t2 − 1)2

+ m2t2
(
4d2

1 − 2d1 + 1
4

) − 2md1 + m
( 1−2b(b+1)

2

)
(mt2 − 1)2

+ 2E + (16b1d1 − 1 − 2a(a + 1))mt2

2(1 − t2)(1 − mt2)
.

The above differential equation is equivalent to a system of n linear equations
for the coefficients of the different powers of t in Pn(t). The energy eigenvalues
are obtained by setting the corresponding determinant equal to zero. In the next
section we obtain the band-edge wave functions for the associated Lamé potential,
when a = 2 and b = 1.

Table III. The Form of the Wave Functions for the Four Sets of Residue Combinations When
a + b and a − b are Odd and Equal to 2N ′ + 1 and 2M ′ + 1, Respectively

Set b1 d1 n = λ1 − 2b1 − 2d1 n(M, N ) Wave function ψ(x) LI solutions

1 3/4 3
4 + b

2 a − b − 2 2M ′ − 1 cn x(dn x)1+bP2M ′−1(sn x) M ′

2 3/4 1
4 − b

2 a + b − 1 2N ′ cn x

(dn x)b
P2N ′ (sn x) N ′ + 1

3 1/4 3
4 + b

2 a − b − 1 2M ′ (dn x)b+1P2M ′ (sn x) M ′ + 1

4 1/4 1
4 − b

2 a + b 2N ′ + 1
P2N ′+1(sn x)

(dn x)b
N ′ + 1
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3. ALP WITH a, b INTEGERS

For this case, we consider the associated Lamé potential with a = 2, b = 1.
For the purpose of comparison with literature, we work with the supersymmetric
potential

V−(x) = 6m sn (x)2 + 2m
cn x2

dn x2 − 4m (21)

This potential is the same as Eq. (1) with a = 2 and b = 1, except that a constant
has been added to make the lowest energy equal to zero. Note that for this potential
the combination a + b and a − b are both odd, i.e., 3 and 1, respectively. Hence,
we use Table III to obtain all the information regarding the residues at the fixed
poles, number of moving poles of χ , number of linearly independent solutions
and their form, for each set, by taking the values of a = 2, b = 1, M ′ = 0, and
N ′ = 1. The unknown polynomial in the wave function can be obtained from Eq.
(20), where G(t) for this potential satisfies,

G(t) = t2
(
4b2

1 − 2b1 + 1
4

) − 2b1 + 1
2

(t2 − 1)2
+ m2t2

(
4d2

1 − 2d1 + 1
4

) − 2md1 − 3m
2

(mt2 − 1)2

+ 2E + 8m + (16b1d1 − 13)mt2

2(1 − t2)(1 − mt2)
(22)

Using Eqs. (20) and (22), one gets the explicit expressions for the eigenfunctions
and the eigenvalues as given in Table IV. From the table, we see that the first set
of residues gives n = −1, which will not be considered as n cannot be negative.
Thus, this particular case of Lamé potential has five band-edge solutions, which
can be obtained analytically out of an infinite number of possible states.

Table IV. For the Associated Lamé Potential V−(x) = 6m sn (x)2 + 2m
cn (x)2

dn (x)2 − 4m, With a = 2

and b = 1 the Residues, the Value of n, Number of Linear Independent Solutions, the Band-Edge
Eigenfunctions and Eigenvalues are as Follows. Here a + b = 3 and a − b = 1 That Gives N ′ = 1

and M ′ = 0

Set b1 d1 n LI solutions Eigenfunction ψ(x) Eigenvalues

1 3/4 5/4 −1 — — —
2 3/4 −1/4 2 2 cn x

dn x
(3msn 2x − 2

±√
4 − 3m) 5 − 3m ± 2

√
4 − 3m

3 1/4 5/4 0 1 dn 2x 0
4 1/4 −1/4 2 2 sn x

dn x
(3msn 2x − 2 − m

±√
4 − 5m + m2) 5 − 2m ± 2

√
m2 − 5m + 4



Periodic Quasi-Exactly Solvable Models 1175

Table V. For the Associated Lamé Potential V−(x) = 63
4 m sn 2x + 3

4 m cn 2x

dn 2x
− 2 − 29

4 m + δ9 With
a = 7/2 and b = 1/2 the Residues, the Value of n, Number of Linear Independent Solutions, the
Band-Edge Eigenfunctions and Eigenvalues are as Follows. Here a + b = 4 and a − b = 3 That

Gives N = 2 and M ′ = 1

Set b1 d1 n LI solutions Eigenfunction ψ(x) Eigenvalues

1 3/4 1 1 1 cn x(dn x)3/2sn x δ9 − m + 2
2 3/4 0 3 2 cn x(dn x)3/2sn x δ9 − m + 2

cn x(dn x)−1/2sn x(1 − 2sn 2x) 14 − 7m + δ9

3 1/4 1 2 2 (dn x)3/2(12m sn 2x − 5m − 2 − δ9) 0
(dn x)3/2(12m sn 2x − 5m − 2 + δ9) 2δ9

4 1/4 0 4 3 (dn x)3/2(12m sn 2x − 5m − 2 − δ9) 0
(dn x)3/2(12m sn 2x − 5m − 2 + δ9) 2δ9

1 − 8sn 2xcn 2x 14 − 7m + δ9

4. ALP WITH a, b HALF-INTEGERS

The potential studied here is the supersymmetric associated Lamé potential,
with a = 7/2 b = 1/2:

V− = 63

4
m sn 2x + 3

4
m

cn 2x

dn 2x
− 2 − 29

4
m + δ9 (23)

where δ9 = √
4 − 4m + 25m2. Note that, for this case, a + b = 4 and a − b = 3,

these are even and odd, respectively. Hence, for such cases, one needs to use sets 1
and 3 from Table II and sets 2 and 4 from Table III in order to get the four groups
of the eigenfunctions. The solutions for this potential are given in Table V. We see
that there is a degeneracy in the band-edge energy eigenvalue, 14 − 7m + δ9.

5. CONCLUSIONS

In this study, we have demonstrated the applicability of QHJ formalism to
QES periodic potentials. We have been successful in obtaining the quasi-exact
solvability conditions and band-edge solutions for cases when both a and b are
integers or half-integers. The origin of the large number of solvability conditions,
for the ALP case, comes out naturally in QHJ approach. One sees that there are four
groups of solutions with each group having different number of moving poles. We
would like to point out that in the case of non-periodic QES models, the parameter n

picks out a particular QES model within a family of potentials. All the analytically
solvable solutions of this potential will have n moving poles, whereas in the
periodic case, by fixing n and one of the parameter a, one obtains two potentials.
For example, if one chooses n = 4 and a = 7/2, and substitutes them in the four
QES conditions in Table I, one obtains the values of b as −5/2, 3/2,−3/2, and
1/2. Among these the values −5/2, 3/2 and −3/2, 1/2 correspond to the same
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potential owing to the transformation b = −b − 1. Thus, one has two potentials
corresponding to distinct (a, b) values namely, (7/2, 3/2) and (7/2, 1/2). Both
these potentials will have a group of solutions which have a QMF with four
moving poles.

Interestingly, the singularity structures of the QES and the ES periodic po-
tentials are similar. But a comparison with polynomial potentials shows that the
singularity structure of the periodic potentials is different.
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